Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The drivers of the tidal and residual flows in estuaries can vary spatially and temporally due to geomorphic complexities, fortnightly tides, and climatic influences. In this paper, we explore the mechanisms that give rise to the circulation patterns in Frenchman Bay, Maine, on the Eastern Coast of the USA, under varying freshwater input conditions and fortnightly tidal phases, using idealized simulations from a high-resolution, three-dimensional numerical model. The results of the simulations at the tidal timescale reveal a tidal asymmetry in vorticity, where vorticity generated during flood tide is not spun-down during the subsequent ebb. This asymmetry prompts the investigation of the residual circulation in the bay which is characterized by large tidal residual eddies. These eddies are found to persist in the depth-averaged residual flow regardless of the freshwater input or tidal phase, leading to the conclusion that the eddies are “geomorphically-constrained” in the bay. Analysis of the horizontal momentum terms and a simulation performed without Coriolis forcing demonstrates that the tidal stress terms predominantly balance the barotropic pressure gradient to give rise to the eddy patterns, while the Coriolis force acts to strengthen their vorticity. The eddies create a laterally sheared residual flow structure with depth, however the flow is more vertically sheared during the neap tide when the baroclinic pressure gradient plays a larger role. These findings demonstrate the persistence of tidal residual eddies regardless of freshwater input or fortnightly tidal phase in a geomorphically complex deglaciated coastal bay with low freshwater input.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available May 20, 2026
-
ABSTRACT Although the brain is often characterized as a complex system, theoretical and philosophical frameworks often struggle to capture this. For example, mainstream mechanistic accounts model neural systems as fixed and static in ways that fail to capture their dynamic nature and large set of possible behaviors. In this paper, we provide a framework for capturing a common type of complex system in neuroscience, which involves two main aspects: (i) constraints on the system and (ii) the system's possibility space of available outcomes. Our analysis merges neuroscience examples with recent work in the philosophy of science to suggest that the possibility space concept involves two essential types of constraints, which we call hard and soft constraints. Our analysis focuses on a domain‐general notion of possibility space that is present in manifold frameworks and representations, phase space diagrams in dynamical systems theory, and paradigmatic cases, such as Waddington's epigenetic landscape model. After building the framework with such cases, we apply it to three main examples in neuroscience: adaptability, resilience, and phenomenology. We explore how this framework supports a philosophical toolkit for neuroscience and how it helps advance recent work in the philosophy of science on constraints, scientific explanations, and impossibility explanations. We show how fruitful connections between neuroscience and philosophy can support conceptual clarity, theoretical advances, and the identification of similar systems across different domains in neuroscience.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available February 28, 2026
-
Understanding local hydraulic conditions is imperative to coastal harmful algal bloom (HAB) monitoring. The research summarized herein describes how the locations and tidal phases selected for coastal hazard sampling can influence measurement results used to guide management decisions for HABs. Our study was conducted in Frenchman Bay, Maine, known for its complex deglaciated coastline, strong tidal influence, and shellfishing activities that are susceptible to problematic HABs such as those produced by some species (spp.) of the diatom genus Pseudo-nitzschia. In-situ measurements of current velocity, density, and turbulence collected over a semidiurnal tidal cycle and a companion numerical model simulation of the study area provide concurrent evidence of two adjacent counter-rotating sub-mesoscale eddies (2–4 km diameter) that persist in the depth-averaged residual circulation. The eddies are generated in the wake of several islands in an area with abrupt bathymetric gradients, both legacy conditions partly derived from deglaciation ∼15 kya. Increased concentrations of Pseudo-nitzschia spp. measured during the semidiurnal survey follow a trend of elevated turbulent dissipation rates near the water surface, indicating that surface sampling alone might not adequately indicate species abundance. Additional measurements of Pseudo-nitzschia spp. from two years of weekly sampling in the region show that algal cell abundance is highest where residual eddies form. These findings provide incentive to examine current practices of HAB monitoring and management by linking coastal geomorphology to hydraulic conditions influencing HAB sampling outcomes, coastal morphometric features to material accumulation hotspots, and millennial time scales to modern hydraulic conditions.more » « less
-
Abstract This paper examines constraints and their role in scientific explanation. Common views in the philosophical literature suggest that constraints are non-causal and that they provide non-causal explanations. While much of this work focuses on examples from physics, this paper explores constraints from other fields, including neuroscience, physiology, and the social sciences. I argue that these cases involve constraints that are causal and that provide a unique type of causal explanation. This paper clarifies what it means for a factor to be a constraint, when such constraints are causal, and how they figure in scientific explanation.more » « less
An official website of the United States government
